The researchers also found that as swarms increase in size, they become denser and the midges’ flights become more closely correlated. This is likely a function of how midges respond to the sound of their neighbors’ buzzing wings, and it allows them to maintain an optimal degree of correlation.
“It’s like the system self-organizes in such a way as to have the maximum possible response,” Dr. Giardina said. Dr. Cavagna described it as a way to “surf the maximum of susceptibility,” enabling sudden, coordinated movements.
“The closest models in physical systems are magnets,” Dr. Cavagna said; that is, the sudden collective shift in particle orientation just before magnetization. But he emphasized that swarming midges are not at that critical point, only near it.
This may be a physical limitation, he noted. True criticality only occurs in systems with many more units than are found in a swarm. A one-gram iron magnet contains roughly 10,000,000,000,000,000,000,000 iron atoms, whereas a decently sized midge swarm contains only several hundred midges.
It is also possible that reaching criticality would be catastrophic for them, rendering the swarm hypersensitive to every perturbation, puff of air or whatever the midge equivalent of a sneeze is. “The best trade-off is to be close to critical,” said Dr. Miguel Muñoz, a physicist at the University of Granada in Spain, who has followed the research closely. “You take advantage of the responsiveness but are not too close, because if you’re too close, you respond to anything.”
The potential benefits of swarming are evident in murmurations, whose synchronized twists and turns may help starlings to evade predators.